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Shock waves in a chain of two-level atoms with exchange and dipole-dipole interactions
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We use a small-amplitude multiple scale expansion to investigate the existence of shock waves in a chain of
two-level atoms with both exchange and dipole-dipole interactions. We show that the exchange interaction
allows the formation of the system of both bright and dark shock waves. Conversely, the dipole-dipole
interaction results in the instability of the background and, as a consequence, in the prevention of the formation
of shock waves. The analytical results are found to be in good qualitative agreement with a direct numerical
integration of the system.@S1063-651X~97!06511-2#
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I. INTRODUCTION

Among possible excitations which arise in nonlinear l
tices, localized modes, like solitons in integrable models,
velope solitons, and intrinsic localized modes in nonin
grable chains, have received a great deal of attention du
the past years. This is justified by the relevance of th
excitations in practical applications involving the transfer
energy along chains. On the other hand, in recent publ
tions @1–7#, it has been shown that nonlinear lattices m
support other kinds of excitation which, at the initial stag
of their evolution, display dynamics similar to that of sho
waves in liquids and gases. Such shock waves have b
observed in both integrable@1,2,4# and nonintegrable@2,5–7#
lattices. The former case also allows an analytical descrip
of the process after the shock wave has been formed. T
for example, in the Toda lattice it has been shown that
wave front of the developed shocks is a train of~bright!
solitons. It is remarkable that this phenomenon survives
nonintegrable cases, i.e., also in these more general c
shock waves develop in a series of localized pulses wh
can be viewed~in some approximation! as a train of solitons
@7#. Moreover, it has been shown that discrete lattices m
also support quite unusualdark shock waves@7# ~dark shock
waves in discrete systems were introduced in Ref.@8#, and in
a continuous dissipative system in Ref.@9#!. This is the case
for example, of the so-called deformable@10# discrete non-
linear Schro¨dinger~DNLS! equation, for which shock wave
of both types, bright and dark, have been found@7#. An ana-
lytical description of the initial stages of shock formation c
be obtained from a small-amplitude multiscale expansion.
a matter of fact, the idea of finding a region in the parame
space where shock waves are expected is fairly simple:
has to look for the region in parameter space where the lin
excitations of the background become effectively dispersi
less. This analytical approach is quite general and, in p
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ciple, can be applicable to many discrete systems. One c
expect, on the basis of these considerations, that shock w
formation should be a generic phenomenon to be observe
various nonlinear lattice systems.

The aim of the present paper is to investigate the e
tence of shock waves in a physical system consisting o
chain of two-level atoms. The system is described by
DNLS-like equation and includes both exchange and dipo
dipole interactions@11#. As a result, we find that the ex
change interaction allows the formation of shock waves
both types, bright and dark. Conversely, the dipole-dip
interaction is quite destructive with respect to shock form
tion, since it results in the instability of the background
nonzero wave vectors. We give an analytical description
these phenomena in terms of a small-amplitude multisc
expansion. Our analytical results are found to be in go
agreement with direct numerical integration of the system

II. MODEL

We consider a one-dimensional chain of two-level ato
described by the Hamiltonian

H5(
n
Eŝn

z2 1
2 (

^m,n&
@Je~n,m!~ ŝn

1ŝm
21ŝn

2ŝm
1!

12Jd~n,m!ŝn
xŝm

x 2I ~n,m!~ ŝn
z1 1

2 !~ ŝm
z 1 1

2 !#. ~1!

Here ŝn5(ŝn
x ,ŝn

y ,ŝn
z) are the Pauli spin operators;ŝn

6

5ŝn
x6 i ŝn

y are identified as creation (ŝn
1) and annihilation

(ŝn
2) operators;E (E.0) is the excitation energy of the

two-level atom,I (n,m), Je(n,m), andJd(n,m) describe the
exciton-exciton, exchange, and dipole-dipole interactions
tween an exciton at the siten and that at the sitem, respec-
tively, and^m,n& means the sum over allm andn such that
mÞn.

We introduce the SU(2) coherent state representation
the Pauli spin operators,

umn&5
exp~mnŝn

1!

A11umnu2
u2&n , ~2!

,
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56 7241SHOCK WAVES IN A CHAIN OF TWO-LEVEL ATOMS . . .
wheremn are the complex field variables, the symbolsu6&n
stand for eigenstates of the angular momentum in which
eigenvalues ofŝn

z are 6 1
2, and the absolute value ofŝn is

1
2. Then applying the stationary phase approximation for
path-integral formalism and applying the approximation
the nearest-neighbor interaction

Je,d~n,m!5Je,d~dn,m111dn,m21!, ~3!

Je,d being positive constants and similar formula valid f
I (n,m), we arrive at the equation of motion in the Lagran
ian form

d

dt

]L

]ṁn

2
]L

]mn
50, ~4!

where

L5
i\

2 (
n

1

11umnu2S m̄n

dmn

dt
2mn

dm̄n

dt
D 2^LuHuL&,

~5!

and uL&5)numn& is the coherent state of the whole spins
Then, using the relations

^mnuŝn
xumn&5

1

2

mn1m̄n

11umnu2
, ~6a!

^mnuŝn
yumn&5

i

2

m̄n2mn

11umnu2
, ~6b!

^mnuŝn
zumn&52

1

2

12umnu2

11umnu2
~6c!

we obtain by straightforward algebra the explicit form of t
equation of motion

i\
dmn

dt
5Emn2JS mn112mn

2m̄n11

11umn11u2
1

mn212mn
2m̄n21

11umn21u2 D
2JdS m̄n112mn

2mn11

11umn11u2
1

m̄n212mn
2mn21

11umn21u2
D

1I S mnumn11u2

11umn11u2
1

mnumn21u2

11umn21u2D . ~7!

HereJ5Je1Jd .

III. BACKGROUND AND ITS STABILITY

The shock waves we are dealing with evolve agains
carrier wave~cw! background of finite amplitude. Naturall
the explicit form and the stability of the cw play a promine
role in the theory. It turns out that there are two essentia
different cases:~i! Jd is either zero or small enough, and~ii !
JdÞ0. We shall see that the shock waves can exist only
the first case~see below!.

Let us start with the case whenJd50 ~evidentlyJ5Je),
i.e., with the case when only exchange and exciton-exc
e

e
f

-

a

y

in

n

interactions are presented. Then it is not difficult to ens
that

mn
~0!5re2 ivt1 ikn ~8!

is a solution of Eq.~7! if

\v5E22 cos~k!J
12r2

11r2
12I

r2

11r2
. ~9!

In order to study the stability of the cw, we make a su
stitution

mn5~11cn!re2 ivt1 ikn, ~10!

whereucnu!umnu in Eq. ~7!, and linearize it. The dispersio
relationV(K) associated with the thus obtained linear equ
tion for cn @}exp(2iVt1iKn)# reads

\V52
12r2

11r2
J sin~k!sin~K !

6
2A2

11r2
J sinS K

2 D H cos2~k!~11r2!2

2Fcos2~k!~12r2!222
I

J
cos~k!r2GcosKJ 1/2

.

~11!

It is readily seen from here that the cw background is sta
~i.e., V is real at allK), if

I ,2Jucosku. ~12!

It is this region of the parameters to which we restrict o
consideration in what follows.

In the present analysisk plays a part of a parameter. It i
interesting to mention that the pointk5p/2 corresponds to
the less stable background which is destroyed by arbitr
exciton-exciton interaction. In what follows we restrict o
analysis to the stable case.

As mentioned before, the region of the parameters wh
shock waves occur corresponds to a weak dispersion of
linear excitations against the background. In order to fi
this region we consider the behavior ofV at smallK. By the
direct expansion we obtain

\V5
2J

11r2
@~12r2!sin k6rA2 cos2 k1 Ĩ cosk#K

2
J

3~11r2!
F ~12r2!sin k6

1

4
A2 cos2 k1 Ĩ cosk

3S r2
3

r

~12r2!2 cosk22r2 Ĩ

2 cosk1 Ĩ
D GK31O~K5!.

~13!

For the sake of convenience here we have introduced a
tation Ĩ 5I /J. It follows from relation~13! that at
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~12r2!sin k57 1
4
A2 cos2 k1 Ĩ cosk

3S r2
3

r

~12r2!2 cosk22r2 Ĩ

2 cosk1 Ĩ
D ,

~14!

the group velocity dispersion becomes anomalously sm
d2V/dK25O(K3) @while in all other regions of the param
eters,d2V/dK25O(K)].

In the caseJdÞ0 the background can be written in th
form

mn
~0!5nknrnk , ~15!

where the constant amplitudernk is given by

rnk5S 2Je12~11n2!Jd2kE
2Je12~11n2!Jd1kE1kI

D 1/2

; ~16!

n is equal to 1 ori and k561. The parametern can be
associated with the polarization, sincesn

x50 at n5 i and
sn

y50 at n51 (sn
x,y being the eigenvalues of the respecti

operators!, while k describes a phase mismatch between t
neighbors (k51 and 21) corresponding to in-phase an
out-of-phase cw, and can be associated with the center
the boundary of the Brillovin zone~BZ!, respectively. In the
case at hand the background is characterized by the relat
small energy of the excitation. That is, there must be

E,2Je12~11n2!Jd2 1
2 ~12k!I . ~17!

In order to examine the stability of the background@Eq.
~16!# we linearize Eq.~3! about solution~15!. The dispersion
relationV(K) of the respective linear waves reads

\2V~K !254H J~12cosK !1JdF11S 12rnk
2

11rnk
2 D 2

cosKG J
3H Jd~12cosK !1JF12S 12rnk

2

11rnk
2 D 2

cosKG
12Ik cosK

rnk
2

~11rnk
2 !2 J . ~18!

The right-hand side of this expression is positively defin
and hence the background is stable, atI ,2J. This is in
accordance with condition~12!, which hereafter is under
stood in the generalized sense, i.e., is applicable to b
cases~in the last onek must be taken either 0 orp). More-
over, from Eq.~13! we see that the dipole-dipole interactio
introduces a gap into the spectrum in the center of the
This is a destructive feature of shock wave formation, sin
it drastically increases the group-velocity dispersion. We
pect, therefore, that shock waves should not exist forJd
Þ0. Below, however, we will see that the even more destr
tive factor is the instability of the background at nonze
wave vectors.
ll
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,
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-

IV. SHOCK WAVES IN THE SMALL-AMPLITUDE LIMIT

Let us start with the caseJd50. In order to describe shoc
waves we employ the small-amplitude expansion, in acc
dance with which

mn5~r1an!exp@ i ~2vt1kn2fn!#. ~19!

Two real quantitiesan andfn are considered, depending o
the slow variablesX5gn, T5gt, and t5g3t, g being a
small parameter,g!1, and are represented in a form of th
sets

an5g2an
~0!1g4an

~1!1•••, fn5gfn
~0!1g3fn

~1!1••• .

~20!

Collecting all terms of the same order, we arrive at
series of equations. In zero order we recover the disper
relation~9!. In the second and third orders ofg we arrive at
the equations as follows

\
]f~0!

]T
5

8rJ cosk

~11r2!2
a~0!1

4r

~11r2!2
Ia ~0!

22 sin ~k!J
12r2

11r2

]f~0!

]X
, ~21!

\
]a~0!

]T
5rJ cos~k!

]2f~0!

]X2
22 sin~k!J

12r2

11r2

]a~0!

]X
.

~22!

Let us introduce new variables (j6 ,T) instead of (X,T),
wherej65X2c6T andc6 makes a sense of velocity:

c65
2J

\~11r2!
@~12r2!sin k6rA2 cos2 k1 Ĩ cosk#.

~23!

Comparing this result with Eq.~13!, one ensures tha
c65dV6 /dK at K50, i.e.,c6 are group velocities of two
branches of the spectrum in the center of the BZ. The
follows from Eqs.~21! and~22! thata(0)5a(0)(j6)5a6 and
f (0)5f (0)(j6) are solutions and the relation between the
is given by

a657~11r2!
Acosk

2A2 cosk1 Ĩ

]f~0!

]j6
. ~24!

The equations appearing in the forth and fifth orders og
are given in the Appendix. The condition of their compatib
ity, Eq. ~A6!, can be written down in the form of the
Korteweg–de Vries~KdV! equation:

]a6

]t
1a~k!a6

]a6

]j6
1b~k!

]3a6

]j6
3

50. ~25!

Here
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a~k!5
4J

\~11r2!2 F210r sin k7~3r221!

3A2 cos2 k1 Ĩ cosk

6
~32r2!Acosk~2 cosk1 Ĩ !

2A2 cosk1 Ĩ
22r Ĩ tan kG ,

~26!

b~k!5
2

3

J

\~11r2!
H ~12r2!sin k

6 1
4
A2 cos2 k1 Ĩ cosk

3Fr2
3

r

~12r2!2 cosk22 Ĩ r2

2 cosk1 Ĩ
G J . ~27!

It follows from Eqs.~25! and ~27! that, if Eq. ~14! is satis-
fied, the coefficientb(k) becomes zero and the KdV equ
tion is reduced to the well-known equation

]a6

]t
1a~k!a6

]a6

]j6
50, ~28!

which in our case describes initial stages of the evolution
a shock wave in a chain of two-level atoms with the ene
transfer by the exchange interaction. To check this result,
numerically integrated Eq.~7! on a long chain~long enough
to neglect the influence of boundary conditions! by taking as
the initial condition a bell-shaped bright or dark pulse of t
type

mn5reiknS 16
A

cosh@~n2n0!#2D . ~29!

In Figs. 1 and 2 we show the time evolution of initial brig
and dark pulses, respectively, of amplitudeuAu50.12, on an
in-phase background (k50) with r50.4, for parameter val-

FIG. 1. Evolution of a bright shock against a nonzero ba
ground with k50 and r50.4, and for parameter valuesI 53.0,
E51.0, andJd50, with Je determined from Eq.~14!.
f
y
e

uesI 53.0, E51.0, andJd50, with Je determined from Eq.
~14!. We see that the initial profiles bend forward in th
direction of propagation until reaching a breaking time
which oscillations, starting from the top, develop on the p
files. These oscillations can be viewed as a train of, resp
tively, bright and dark pulses ordered with decreasing am
tude when moving from the front to the rear of the wav
Depending on parameter values, however, the train dec
position can occur after times so long that the shock may
considered effectively stable for all practical purpouses. T
is shown in Fig. 3 where a bright shock profile is report
after an evolution time of 1000. From this figure we see t
after such a time the shock front is still quite evident, and
oscillations are closely packed behind it. It is remarka
that, in spite of the different types of nonlinearity charact
izing our system, the waves which develop are very sim
to the bright and dark shocks observed in the deforma
DNLS system@7#. This shows that the exchange interacti
can support the formation of shocks. Conversely, the pre
ous analysis predicted that the strong dispersion induced
the dipole-dipole interaction should prevent the formation
shock waves. This phenomenon can be easily checked

- FIG. 2. Evolution of a dark shock against nonzero backgrou
with k50 and r50.4, and for parameter valuesI 53.0, E51.0,
andJd50, with Je determined from Eq.~14!.

FIG. 3. A bright shock profile after an evolution time of 100
for parameter valuesk50, r50.4, I 50.1, E51.0, andJd50, and
with Je determined from Eq.~14!.



I
am
s
r
e

id

a
de

y

l

r-
rm
tude
he
k-
the
ase
ar-
the

with

um:

ve

ain
al-
nd
uc-
he
ins
of
ale
ical
ee-

-
ey
ral
do

the
ec-
ave

cre-

nd
s of
ed
u-

-

o

o

7244 56V. V. KONOTOP, M. SALERNO, AND S. TAKENO
direct numerical simulations as shown in Figs. 4 and 5.
these figures we have reported the time evolution of the s
initial pulses and at the same parameter values as in Fig
and 2, but now withJd50.025. From these figures it is clea
that the shock waves are destroyed even for a small valu
Jd .

To better understand this phenomenon, we shall cons
the case of smallJd values by assuming thatJd5g3 J̃ d .
Within the framework of this scaling, we can provide
small-amplitude multiscale expansion similar to the one
scribed above but for the case of a background withk50
and with zero frequency@i.e., for the background given b
Eqs.~15! and~16!#. We drop details of calculations@see Eqs.
~A7! and ~A8! in the Appendix# and present just the fina
form of the evolution equation,

]a6

]t
1aka6

]a6

]j6
1n2zka61n2dkf~0!250. ~30!

Heref (0) is linked with a6 by relation~24!,

FIG. 4. The same time evolution as in Fig. 1 in the case
nonzero dipole-dipole interaction:Jd50.025.

FIG. 5. The same time evolution as in Fig. 2 in the case
nonzero dipole-dipole interaction:Jd50.025.
n
e

. 1

of

er

-

zk524
J̃ d

\

116r21r4

r~11r2!3
, ~31!

dk528
J̃ d

\

12r2

~11r2!2
, ~32!

a15a(0) anda215a(p).
In the special caser51, Eq. ~30! takes the form

]a6

]t
1aka6

]a6

]j6
1n2zka650 . ~33!

It is seen from this equation that the dipole-dipole inte
action results in an effective dissipative or amplfying te
which leads either to a decrease or increase of the ampli
of the shock wave. This is a reflection of the fact that t
dipole-dipole interaction leads to an instability of the bac
ground at any wave vector nonequal to zero. Thus
mechanism of the destruction of the shock wave in the c
at hand can be described in the follwing way. The nonline
ity results in a self-phase modulation, and in particular
phase mismatch between the nearest neighbors changes
the amplitude of the wave@see Eq.~24!#. Hence the change
of the wave amplitude results in the change of the spectr
the contribution of the harmonics withkÞ0 rises. That is,
these harmonics make the wave unstable atJdÞ0. Recall
that the stability of a background only withk50, 6p/2,p
was proven in Sec. III, while backgrounds with other wa
vectors are unstable.

V. CONCLUSION

It has been shown that the exchange interaction in a ch
of two-level atoms described by a DNLS-like equation
lows the formation of shock waves of both types, bright a
dark. Conversely, dipole-dipole interaction is quite destr
tive with respect to shock formation, since it results in t
instability of the carrier wave background for large doma
of wave vectors. We provided an analytical desription
these phenomena in terms of a small-amplitude multisc
expansion, and compared the result with a direct numer
integration of the system, finding a good qualitative agr
ment.

Like some other localized excitations~for instance, soli-
tons or intrinsic localized modes! shock waves are suffi
ciently long-living objects. However, after some time th
decay in a train of solitonlike excitations. Then a natu
question arises: why the newborn localized excitations
not produce ‘‘secondary’’ shock waves. The answer is in
fact that, during the evolution of the shock waves, the sp
trum of the excitations is changed, i.e., characteristic w
numbers are shifted. This breaks down condition~14!, i.e.,
the relation among parameters necessary for shock wave
ation.

The results obtained here for the existence of bright a
dark shock waves stems from the coherence propertie
excitons in a system of two-level atoms which are describ
by Eq.~7!, having the form of a classical equation. The sit
ation here is somewhat similar to that in laser physics@12#,
where two-level atoms~but with atom-atom interaction omit

f

f



en
it
h
a

la
ie
m
ll
th
ni
ld
v

y
o.
fi

f
or
r-

-

le
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ted! in interaction with an intense radiation field are oft
described by classical equations. Exploiting the similar
between these two cases leads to the presumption that s
waves may be observed in exciton systems by applying
intense radiation field to the insulating solids or molecu
crystals to which the Frencel exciton model can be appl
Then initial exciton profiles may be realizable by superi
posing a strong pulse field with respect to space as we
time variables. Generally speaking, more attention, both
oretical and experimental, has so far been paid to Wan
excitons in exciton problems in solid-state physics. It wou
therefore be worthwhile to seek the existence of shock wa
for the Wannier excitons, as well.
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APPENDIX

In the fourth and fifth orders ofg, one obtains the equa
tions

\
]f~1!

]T
12 sin~k!J

12r2

11r2

]f~1!

]X
5Aa~1!1B, ~A1!

\
]a~1!

]T
5rJ cos~k!

]2f~1!

]X2
22 sin~k!J

12r2

11r2

]a~1!

]X
1C,

~A2!

where

A5
4r~2J cosk1I !

~11r2!2
, ~A3!

B5
\c6

r
a~0!

]f~0!

]j6
2\

]f~0!

]t
A

y
ock
n
r
d.
-
as
e-
er

es

-

1J
12r2

11r2 H coskF 4~32r2!

~12r4!~11r2!
a~0!2

2
1

r

12r2

11r2

]2a~0!

]j6
2

1S ]f~0!

]j6
D 2G2sin kS 1

6

]3f~0!

]j6
3

1
124r22r4

r~12r4!
a~0!

]f~0!

]j6
D J 1

2I

~11r2!2 S 32r2

11r2
a~0!2

1r
]2a~0!

]j6
2 D , ~A4!

C52JF coskS 12r2

11r2

]a~0!

]j6

]f~0!

]j6
1

r

24

]4f~0!

]j6
4 D

1sin kS r
]f~0!

]j6

]2f~0!

]j6
2

2
1

6

12r2

11r2

]3a~0!

]j6
3

1
4r

~11r2!2
a~0!

]a~0!

]j6
D G . ~A5!

Here we have taken into account thata(0) andf (0) are func-
tions only onj6 and a ‘‘slower’’ timet.

The condition of the compatibility of Eqs.~A1! and~A2!
reads

\
]B

]T
12 sin~k!J

12r2

11r2

]B

]X
1AC50 . ~A6!

In order to take into account the effect of the dipole-dipo
interactionJd5g3 J̃ d , one has to make a change in Eq.~A6!

B°B14 n̄ J̃ df~0!, ~A7!

C°C14 n̄ k J̃ dr
12r2

11r2
f~0!222 n̄ J̃ dr

124r22r4

~11r2!2
a~0!.

~A8!
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