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Shock waves in a chain of two-level atoms with exchange and dipole-dipole interactions
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We use a small-amplitude multiple scale expansion to investigate the existence of shock waves in a chain of
two-level atoms with both exchange and dipole-dipole interactions. We show that the exchange interaction
allows the formation of the system of both bright and dark shock waves. Conversely, the dipole-dipole
interaction results in the instability of the background and, as a consequence, in the prevention of the formation
of shock waves. The analytical results are found to be in good qualitative agreement with a direct numerical
integration of the systeniS1063-651X97)06511-2

PACS numbgs): 03.40.Kf, 63.50+x, 75.30.Et

I. INTRODUCTION ciple, can be applicable to many discrete systems. One could
expect, on the basis of these considerations, that shock wave
Among possible excitations which arise in nonlinear lat-formation should be a generic phenomenon to be observed in
tices, localized modes, like solitons in integrable models, envarious nonlinear lattice systems.
velope solitons, and intrinsic localized modes in noninte- The aim of the present paper is to investigate the exis-
grable chains, have received a great deal of attention duriniggnce of shock waves in a physical system consisting of a
the past years. This is justified by the relevance of thes€hain of two-level atoms. The system is described by a
excitations in practical applications involving the transfer of DNLS-like equation and includes both exchange and dipole-
energy along chains. On the other hand, in recent publicedipole interactiond11]. As a result, we find that the ex-
tions [1-7], it has been shown that nonlinear lattices maychange interaction allows the formation of shock waves of
support other kinds of excitation which, at the initial stagesboth types, bright and dark. Conversely, the dipole-dipole
of their evolution, d|sp|ay dynamics similar to that of shock interaction is quite destructive with respect to shock forma-
waves in liquids and gases. Such shock waves have bedin, since it results in the instability of the background at
observed in both integrablé,2,4] and nonintegrablg2,5—7 nonzero wave vectors. We give an analytical description of
lattices. The former case also allows an analytical descriptiofnese phenomena in terms of a small-amplitude multiscale
of the process after the shock wave has been formed. Thugxpansion. Our analytical results are found to be in good
for example, in the Toda lattice it has been shown that thé@greement with direct numerical integration of the system.
wave front of the developed shocks is a train (bfight)
solitons. It is remarkable that this phenomenon survives in Il. MODEL
nonintegrable cases, i._e., also.in these more general Cases,\we consider a one-dimensional chain of two-level atoms
shock waves (_jevelop in a se_rles_of Iocallze_d pulse_s whicliascribed by the Hamiltonian
can be viewedin some approximatignas a train of solitons
[7]. Moreover, it has been shown that discrete lattices may

_ ~ Rl

also support quite unusudark shock wave$7] (dark shock H= ; o= %<%> [Je(n.m)(o oyt 0y 07)

waves in discrete systems were introduced in R&f.and in '

a continuous dissipative system in R]). This is the case, +2\]d(n7m)(}§(}rxn_ I (n,m)(&fﬁ— %)((}fnJr H1. @

for example, of the so-called deformalji0] discrete non-
linear Schrainger(DNLS) equation, for which shock waves Here ¢,=(0%,0),0%) are the Pauli spin operatorst.
of both types, bright and dark, have been folifil An ana-  _5x, 5y are jdentified as creatioro{’) and annihilation
lytical description of the initial stages of shock formationcan ~ "~ " ) o

be obtained from a small-amplitude multiscale expansion. A§9n) OPerators;& (£>0) is the excitation energy of the

a matter of fact, the idea of finding a region in the parametefWo-level atom}(n,m), Je(n,m), andJq(n,m) describe the
space where shock waves are expected is fairly simple: orfexciton-exciton, exchangg, and d|poIe—d|poIe_mteractlons be-
has to look for the region in parameter space where the linedyV€€n an exciton at the siteand that at the siten, respec-
excitations of the background become effectively dispersiontively, and(m,n) means the sum over ath andn such that

less. This analytical approach is quite general and, in printf#n- _
We introduce the SU(2) coherent state representation for

the Pauli spin operators,
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whereu, are the complex field variables, the symbpis),, interactions are presented. Then it is not difficult to ensure
stand for eigenstates of the angular momentum in which théhat

eigenvalues of}ﬁ are =3, and the absolute value of, is 0)

3. Then applying the stationary phase approximation for the Mn =
path-integral formalism and applying the approximation of. . .
the nearest-neighbor interaction is a solution of EqQ(7) if

pe—iwt+ikn (8)

2

e ©
1+p 1+p

2
Je,d(N,M)=Je 4(Snm+1t Snm-1), (€©)) ﬁwZS—ZCOE{k)Jl_p

Je.q being positive constants and similar formula valid for
I(n,m), we arrive at the equation of motion in the Lagrang-

) In order to study the stability of the cw, we make a sub-
ian form

stitution

aa_r_, 7 pn=(L+g)pe Wk, (10
dt Ipn Itin . . . . .
where| | <|un| in Eq. (7), and linearize it. The dispersion
where relation)(K) associated with the thus obtained linear equa-

tion for ¢, [ cexp(~iQt+iKn)] reads

i 1 [—du du,
=22 T “nd—f‘“nd—t”)‘“'HM% 1-p?
L 7.0 =2"——1J sin(k)sin(K)
(5) 1+ p?
and|A)=1II,|u,) is the coherent state of the whole spins. 2 K
Then, using the relations + 5J sin(— (cos’-(k)(lerz)2
1+p 2
“ 1 ,U,n+; | 1/2
(el ol )= PR (6a) ~| cog(k)(1—p?)?~25 cogk)p? cosK] .
LT 11
(el ¥ ) = 5 £ o) . ( )
n 2 1+ | upl? It is readily seen from here that the cw background is stable
(i.e., Q is real at allK), if
A 1 1_|:U’n|2
ol = 6C | <2J|cosk|. (12
(ol == 5 (69 cosk

) ) o It is this region of the parameters to which we restrict our
we obtain by straightforward algebra the explicit form of the ., sideration in what follows.

equation of motion In the present analysis plays a part of a parameter. It is
interesting to mention that the poike 7/2 corresponds to

2 2
ih%:&u _g| M2 Moot An-17 Bnfe-t the less stable background which is destroyed by arbitrary
dt " 14| pns1l? 1+ | pn_q/? exciton-exciton interaction. In what follows we restrict our
. . analysis to the stable case.
,un+1—,uﬁ,un+1 ,uvnfl—,u,ﬁ,unfl As mentioned before, the region of the parameters where
T Yd 1+] 2 + 1+] 2 shock waves occur corresponds to a weak dispersion of the
Kn+1 -1 linear excitations against the background. In order to find
ol nsal?  genl pnoal? th_is region we consider th'e behavior@fat smallK. By the
+1 + . (7) direct expansion we obtain
1+|/~Ln+1|2 ]-'*'|/an71|2
HereJ=J¢+Jq. Q= liJ S[(1=p?)sin k=p\2co€ k+T cosk]K
p
Il. BACKGROUND AND ITS STABILITY L
] — p2)sin k+— T
The shock waves we are dealing with evolve against a 3(1+p?) (1=p%)sin k_4\/2 cos k+T cosk
carrier wave(cw) background of finite amplitude. Naturally
the explicit form and the stability of the cw play a prominent 3 (1-p?)? cosk—2p7T | | . s
role in the theory. It turns out that there are two essentially X\ p— ; > = K=+ O(K®).
. . o " cosk+ 1
different casesti) J4 is either zero or small enough, afid)
J4#0. We shall see that the shock waves can exist only in (13
the first casésee below. ] ]
Let us start with the case whelg=0 (evidentlyJ=J,), For the sake of convenience here we have introduced a no-

i.e., with the case when only exchange and exciton-excitottion T =1/J. It follows from relation(13) that at
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(l—pz)Sin k= 141-1\/2 co2 k+T cosk IV. SHOCK WAVES IN THE SMALL-AMPLITUDE LIMIT

Let us start with the cask;=0. In order to describe shock

ol o 3 (1-p?)? cosk—2p?T waves we employ the small-amplitude expansion, in accor-
P p 2 cosk+T ' dance with which
4 pn=(p+agexli(-ot+kn-¢y)]. (19

the group velocity dispersion becomes anomalously sma

d20/dK2=0(K?) [while in all other regions of the param- I'|‘Wo real quantities,, and ¢,, are considered, depending on

i - - — .3 i
eters,d*0/dK*=O(K)]. ;r;?aﬁlov;r;/rarlré?g:ei(l err:d Lreyrté ?QSe;teg ;{n g ft;(rarlrrw]gofathe
In the casely#0 the background can be written in the sets P [ b
form
0 ap=7a + '+, da=yd + Y B+

Mn = VKnp VK (15)
" (20)

where the constant amplitugg, is given by Collecting all terms of the same order, we arrive at a

112 series of equations. In zero order we recover the dispersion
relation(9). In the second and third orders pfwe arrive at
the equations as follows

23+ 2(1+ 1) Jg— kE

k= ; 16
P 2Jo+2(1+ v?) g+ kE+ Kl (16

v is equal to 1 ori and k==*1. The parameter can be ap'®  8pJ cosk © 4p ©

associated with the polarization, sineé=0 at »=i and aT (1+ p?)2 ar+ (1+p2)2|a

a)=0 atv=1 (o’ being the eigenvalues of the respective

operatorg while k describes a phase mismatch between two _ 1—p? 3¢

neighbors =1 and —1) corresponding to in-phase and —2sin(k)J 2 X (21)

out-of-phase cw, and can be associated with the center and I+p

the boundary of the Brillovin zon€BZ), respectively. In the

case at hand the background is characterized by the relatively ~ da® ?pl9 _ 1-p? 9al®

small energy of the excitation. That is, there must be o1 —pJd cogk) X2 —2sink)J 142 X
(22)

E<2t2(1+1v2)Jg— 3 (1— k). (17)

Let us introduce new variables{,T) instead of ¥,T),
In order to examine the stability of the backgrouitly.  whereé. =X—c. T andc. makes a sense of velocity:
(16)] we linearize Eq(3) about solutior(15). The dispersion
relation () (K) of the respective linear waves reads

[(1—p?)sink+p\/2 cog k+T cosk].
(23

} 1+ p?)

1_p]2/K ?
1+ > cosK
1+p5.

2
1_p12//<
1—( ) cosK

hZQ(K)2=4[ J(1—cosK)+Jq4

Comparing this result with Eq(13), one ensures that
c.=dQ./dK atK=0, i.e.,c. are group velocities of two
branches of the spectrum in the center of the BZ. Then it
follows from Eqgs.(21) and(22) thata(®=a(®(¢.)=a. and

X[Jd(l—COSK)-FJ

p2. ¢0=0)(£,) are solutions and the relation between them
+2l k cosK B (18) s given by
(1+p3.0)
/ (0)
The right-hand side of this expression is positively defined, a.=7(1+p? cosk _ ¢ ) (24)
and hence the background is stable,l &t2J. This is in 2\/2 cok+T €=

accordance with conditiofl2), which hereafter is under-

stood in the generalized sense, i.e., is applicable to both The equations appearing in the forth and fifth orders of

caseg(in the last one&k must be taken either 0 ar). More-  are given in the Appendix. The condition of their compatibil-
over, from Eq.(13) we see that the dipole-dipole interaction ity, Eq. (A6), can be written down in the form of the

introduces a gap into the spectrum in the center of the BZKorteweg—de VriegKdV) equation:
This is a destructive feature of shock wave formation, since

it drastically increases the group-velocity dispersion. We ex- 9. da.

pect, therefore, that shock waves should not exist Jpr — +a(k)a. ——+B(Kk)
# 0. Below, however, we will see that the even more destruc- o7 IE+

tive factor is the instability of the background at nonzero

wave vectors. Here

a.
IEL

=0. (25)
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FIG. 1. Evolution of a bright shock against a nonzero back- FIG. 2. Evolution of a dark shock against nonzero background
ground withk=0 and p=0.4, and for parameter valuds=3.0,  Wwith k=0 andp=0.4, and for parameter valugs-3.0, E=1.0,
E=1.0, andJ4=0, with J, determined from Eq(14). andJy=0, with J. determined from Eq(14).

uesl=3.0,E=1.0, andJ4=0, with J, determined from Eq.
—10p sink¥(3p2—1) (14). We see that the initial profiles bend forward in the
direction of propagation until reaching a breaking time at
= which oscillations, starting from the top, develop on the pro-
x V2 cog k+T cosk files. These oscillations can be viewed as a train of, respec-
tively, bright and dark pulses ordered with decreasing ampli-
(3 p?)Jcosk(2 cosk+T) tude when moving from the front to the rear of the wave.
2\/2 cosk+T Depending on parameter values, however, the train decom-
position can occur after times so long that the shock may be
considered effectively stable for all practical purpouses. This
is shown in Fig. 3 where a bright shock profile is reported
_ 2 (1— p?)sink after an evolution time of 1000. From this figure we see that
3 a(1+pd P after such a time the shock front is still quite evident, and the
oscillations are closely packed behind it. It is remarkable
i%\/z co2 k+ T cosk that, in spite of the different types of nonlinearity character-
izing our system, the waves which develop are very similar
to the bright and dark shocks observed in the deformable
] - (@D DNLS system7]. This shows that the exchange interaction
can support the formation of shocks. Conversely, the previ-
It follows from Egs.(25) and (27) that, if Eq.(14) is satis- ©OUS a_malysis predicted that the strong dispersion indu_ced by
fied, the coefficienB(k) becomes zero and the KdV equa- the dipole-dipole interaction should prevent the formation of

a(k)=

4]
A(1+p?)2

—2pT tank]|,

(26)

B(K)

" 3 (1—p?)? cosk—2T p?
P7p 2 cosk+ T

tion is reduced to the well-known equation shock waves. This phenomenon can be easily checked by

B aka. 220 28 08¢

(97' a( )ai agt — Y ( )

04r
which in our case describes initial stages of the evolution of
a shock wave in a chain of two-level atoms with the energy 0al
transfer by the exchange interaction. To check this result, we ;s )
numerically integrated Eq7) on a long chair(long enough 02l
to neglect the influence of boundary conditipby taking as )
the initial condition a bell-shaped bright or dark pulse of the
type 0.1F
A 0.0 1 1 1 1 1 1 i
1= pelkn| 1+ 29) 0 200 400 600 800 1000 1200
" cosh (n—ng)]? n

In Figs. 1 and 2 we show the time evolution of initial bright  FIG. 3. A bright shock profile after an evolution time of 1000
and dark pulses, respectively, of amplity#¢=0.12, on an  for parameter valuek=0, p=0.4, | =0.1,E=1.0, andJ4=0, and
in-phase backgroundkE 0) with p=0.4, for parameter val- with J, determined from Eq(14).
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jd 1+6p2+p*

{e=—4 ————, (3D)
hop(1+p?)°
jd 1_p2
S,=—8F—————, 32
8 L (32

a1=a(0) anda_;=a(m).
In the special casp=1, Eq.(30) takes the form
da. Ja

== T2 —
P +a"at(9§i+v {a-=0. (33

It is seen from this equation that the dipole-dipole inter-
action results in an effective dissipative or amplfying term
1600 which leads either to a decrease or increase of the amplitude
of the shock wave. This is a reflection of the fact that the
FIG. 4. The same time evolution as in Fig. 1 in the case ofdipole-dipole interaction leads to an instability of the back-
nonzero dipole-dipole interactiody=0.025. ground at any wave vector nonequal to zero. Thus the
mechanism of the destruction of the shock wave in the case
direct numerical simulations as shown in Figs. 4 and 5. Inat hand can be described in the follwing way. The nonlinear-
these figures we have reported the time evolution of the samigy results in a self-phase modulation, and in particular the
initial pulses and at the same parameter values as in Figs.ghase mismatch between the nearest neighbors changes with
and 2, but now withl4=0.025. From these figures it is clear the amplitude of the wavlsee Eq(24)]. Hence the change
that the shock waves are destroyed even for a small value @ff the wave amplitude results in the change of the spectrum:

Jg- the contribution of the harmonics witk#0 rises. That is,
To better understand this phenomenon, we shall considehese harmonics make the wave unstablel g 0. Recall
the case of smally values by assuming thaty=%J. that the stability of a background only witt=0, * 7/2,7

Within the framework of this scaling, we can provide aWas proven in Sec. lll, while backgrounds with other wave
small-amplitude multiscale expansion similar to the one devectors are unstable.
scribed above but for the case of a background WwithO

and with zero frequencji.e., for the background given by V. CONCLUSION
Egs.(15) and(16)]. We drop details of calculatiorjsee Egs.
(A7) and (A8) in the Appendif and present just the final It has been shown that the exchange interaction in a chain
form of the evolution equation, of two-level atoms described by a DNLS-like equation al-
lows the formation of shock waves of both types, bright and
da. da. dark. Conversely, dipole-dipole interaction is quite destruc-
~+a,a.—— +v?{a.+1v°5,4'9?=0. (300 tive with respect to shock formation, since it results in the

ar o0&

instability of the carrier wave background for large domains
©) e 1 ] ) of wave vectors. We provided an analytical desription of
Here ¢'* is linked witha.. by relation(24), these phenomena in terms of a small-amplitude multiscale
expansion, and compared the result with a direct numerical
integration of the system, finding a good qualitative agree-
ment.

Like some other localized excitatiorifor instance, soli-
tons or intrinsic localized modgshock waves are suffi-
ciently long-living objects. However, after some time they
decay in a train of solitonlike excitations. Then a natural
question arises: why the newborn localized excitations do
not produce “secondary” shock waves. The answer is in the
fact that, during the evolution of the shock waves, the spec-
trum of the excitations is changed, i.e., characteristic wave
numbers are shifted. This breaks down conditidd), i.e.,
the relation among parameters necessary for shock wave cre-
ation.

The results obtained here for the existence of bright and
dark shock waves stems from the coherence properties of
excitons in a system of two-level atoms which are described
by Eq.(7), having the form of a classical equation. The situ-

FIG. 5. The same time evolution as in Fig. 2 in the case ofation here is somewhat similar to that in laser phy$i3,
nonzero dipole-dipole interactiody=0.025. where two-level atoméout with atom-atom interaction omit-
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ted in interaction with an intense radiation field are often 1—p2 4(3— p2
described by classical equations. Exploiting the similarity +J 51 cosk| ——————-a
between these two cases leads to the presumption that shock 1+p (1=p")(1+p%)

waves may be observed in exciton systems by applying an

intense radiation field to the insulating solids or molecular _ E 1-p? 5%a'® (’M’(O))z —sink E 7°¢'”
crystals to which the Frencel exciton model can be applied. p 1+p2 35?: 0é 6 ?é
Then initial exciton profiles may be realizable by superim-
posing a strong pulse field with respect to space as well as 1—4p2—p* (0)a¢><°> 21 3—p? 02
time variables. Generally speaking, more attention, both the- T+ 12 a - + 11022\ 14 02
oretical and experimental, has so far been paid to Wannier p(1=p") - (1409 P
excitons in exciton problems in solid-state physics. It would 5230
therefore be worthwhile to seek the existence of shock waves P ) , (A4)
for the Wannier excitons, as well. 23
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APPENDIX

Here we have taken into account tla&? and ¢(© are func-
In the fourth and fifth orders of, one obtains the equa- tions only oné.. and a “slower” time 7.

tions The condition of the compatibility of Eq$A1) and (A2)
reads
5¢(1) 1_p2 (9¢(1)
+2si =AaV+
T zsm(k)Jlﬂ)2 X haTrE A h§+28idk)Jl_p2E+AC—O (AB)
JT 1+ p2 oX ’
galt 2 pV 1—p2 gaV
f =pJ cogk) —-2sink))—— ——+C,
aT G 1+p2 X In order to take into account the effect of the dipole-dipole
(A2) interactionJ4= y*J 4, one has to make a change in E46)
where
B—>B+4vJ4¢, A7
4p(2J cosk+1) ad A7)
T L 22 (A3)
(1+p%)
— . 1-p? 1-4p?—p*
© 540 CoC+avkTgp 5 62— 20T gp=———2-a.
p IR T (A8)
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